Sunday, August 3, 2008

speedometer

The dashboard instrument cluster in your car organizes a variety of sensors and gauges, including the oil pressure gauge, coolant temperature gauge, fuel level gauge, tachometer and more. But the most prominent gauge -- and perhaps the most important, at least in terms of how many times you look at it while you're driving -- is the speedometer. The job of the speedometer is to indicate the speed of your car in miles per hour, kilometers per hour or both. Even in late-model cars, it's an analog device that uses a needle to point to a specific speed, which the driver reads as a number printed on a dial.

speedometer
Photo courtesy of Dreamstime
A modern speedometer

As with any emerging technology, the first speedometers were expensive and available only as options. It wasn't until 1910 that automobile manufacturers began to include the speedometer as standard equipment. One of the first speedometer suppliers was Otto Schulze Autometer (OSA), a legacy company of Siemens VDO Automotive AG, one of the leading developers of modern instrument clusters. The first OSA speedometer was built in 1923 and its basic design didn't change significantly for 60 years. In this article, we're going to look at the history of speedometers, how they work and what the future may hold for speedometer design.

Types of Speedometers

old and new speedometer
Photo courtesy of Siemens VDO Automotive
The speedometer has gone through
many changes in the last century.

There are two types of speedometers: electronic and mechanical. Because the electronic speedometer is actually a relatively new invention -- the first all-electronic speedometer didn't appear until 1993 -- this article will focus primarily on the mechanical speedometer, or the eddy-current speedometer.

Otto Schulze, an inventor from Strasbourg, filed the first patent for the eddy-current speedometer in 1902. Schulze conceived of the revolutionary device as a solution to a growing problem. Cars weren't only becoming more popular, they were also traveling faster. The average automobile's top speed just after the turn of the 20th century was 30 miles per hour, slow by today's standards but sizzling fast at a time when much of the world still moved at the leisurely pace of a horse-drawn carriage. As a result, serious accidents began to increase dramatically.

Schulze's invention allowed drivers to see exactly how fast they were traveling and to make adjustments accordingly. At the same time, many countries established speed limits and used police officers to enforce them. Early solutions required automobiles to have speedometers with two dials -- a small dial for the driver and a much larger dial mounted so police could read it from a distance.


How an Eddy-Current Speedometer Works

eddy current speedometer
Photo courtesy of Dreamstime
An eddy current speedometer

Let's say a car is traveling along the highway at a constant speed. That means its transmission and driveshaft are rotating at a speed that corresponds to the vehicle speed. It also means that the mandrel in the speedometer's drive cable -- because it's connected to the transmission via a set of gears -- is also rotating at the same speed. And, finally, the permanent magnet at the other end of the drive cable is rotating.

As the magnet spins, it sets up a rotating magnetic field, creating forces that act on the speedcup. These forces cause electrical current to flow in the cup in small rotating eddies, known as eddy currents. In some applications, eddy currents represent lost power and are therefore undesirable. But in the case of a speedometer, the eddy currents create a drag torque that does work on the speedcup. The cup and its attached needle turn in the same direction that the magnetic field is turning -- but only as far as the hairspring will allow it. The needle on the speedcup comes to a rest where the opposing force of the hairspring balances the force created by the revolving magnet.

What if the car increases or decreases its speed? If the car travels faster, the permanent magnet inside the speedcup will rotate faster, which creates a stronger magnetic field, larger eddy currents and a greater deflection of the speedometer needle. If the car slows down, the magnet inside the cup rotates more slowly, which reduces the strength of the magnetic field, resulting in smaller eddy currents and less deflection of the needle. When a car is stopped, the hairspring holds the needle at zero.

reference from howstuffworks.com.thanz for information

No comments: